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Abstract 
Purpose-This paper aims to calculate the mixed-mode stress intensity factors (SIFs) of a 
three-dimensional crack meeting the interface in a bimaterial under shear loading by a hypersingular 
integral equation (HIE) method, And further to assess the accuracy of numerical solutions for the 
mixed mode SIFs along the crack front. 
Design/methodology/approach-A three-dimensional crack modeling is reduced to solving a set of 
HIEs. Based on the analytical solutions of the singular stress field around the crack front, a numerical 
method for the HIEs is proposed by a finite-part integral method, where the displacement 
discontinuities of the crack surface are approximated by the product of basic density functions and 
polynomials. Using FORTRAN program, numerical solutions of the mixed-mode SIFs of some 
examples are presented. 
Findings-The numerical method is proved to be an effective construction technique. The numerical 
results show that this numerical technique is successful, and the solution precision is satisfied. 
Research limitations/implications-This work takes further steps to improve the fundamental systems 
of HIE for its application in the fields of arbitrary shape crack problems. Propose several techniques 
for numerical implementation, which could increase the efficiency and accuracy of computation 
Practical implications-Whenever there is a structure containing the three dimensional crack, the 
analysis method described in this paper can be utilized to find the critical configurations under which 
the structure may be most vulnerable. In such cases, the strength predictions would be safer if the 
crack could be taken into account. 
Originality/value-This paper is the first to apply HIE method to analyzing the mixed-mode crack 
meeting the interface in three-dimensional dissimilar materials. Numerical solutions of the 
mixed-mode SIFs can give the satisfied solution precision. 
Keywords Stress intensity factor, Boundary element method, Crack, Composite material, 
Hypersingular integral equation. 
Paper type Research paper 
 
1 Introduction 
In recent decades, the use of new materials is increasing in a wide range of engineering field and the 
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accurate evaluation of interface strength in dissimilar materials becomes very important. Considerable 
researches have been done to evaluate the stress intensity factors and crack opening displacement for 
cracks in dissimilar materials (Cook and Erdogan, 1972; Lee and Keer, 1986; Chen and Nisitani, 1993; 
Ang and Fan, 2004). However, most of these works are on two-dimensional cases. Because of the 
difficult of mathematics, there are a few analytical methods for three-dimensional crack problems. 
Antipov (1999) reduced the semi-infinite plane interface crack between 3D isotropic half-spaces to the 
analysis of 3×3 matrix Wiener-Hopf problem, and found the stresses, discontinuities of the 
displacements, the stress intensity factors and the weight functions. Using modified integral equation 
method, Roy and Saha (2000) derived the crack opening displacement of an elliptic crack in an infinite 
elastic medium subjected to a concentrated pair of point force loading at an arbitrary location on the 
crack faces and obtain the stress intensity factor along the crack front. However several numerical 
methods are available, such as the hypersingular integral equation method combined with boundary 
element method (Qin et al. 1997; Helsing et al.2001; Lee and Keer, 1986) evaluated the stress 
intensity factors of a crack meeting the interface by a body force method, but they didn’t give the 
singularity and the singular stress field near the crack front at the interface. Noda et al. (1999) studied 
mixed mode stress intensity factors of an inclined semi-elliptical surface crack by a body force method, 
in which the unknown body force densities were approximated by the products of fundamental density 
functions and polynomials. Qin and Noda (2003) studied a crack meeting the interface in a 
three-dimensional dissimilar material under a normal load by a hypersingular integral equation 
method. 
In the present paper, a hypersingular integral equation method based on the body force method is 
applied to solve the problem of a three-dimensional vertical crack meeting at an interface under mixed 
mode loading. Based on the analytical solution of singular stress field near the crack front, the 
numerical approach suggested by Noda et al. (1999) will be improved to obtain highly reliable 
numerical results of stress intensity factors. 
 
2 General solutions and the hypersingular integral equation for a planar crack meeting the 
bimaterial interface 
A fixed rectangular Cartesian system xi (i=1, 2, 3) is used. Consider two dissimilar half-spaces bonded 
together along the x1–x3 plane. Suppose that the right half-space (x2 space) is occupied by an elastic 

medium with elastic constants (μ, ν)and the left half-space (-x2 space) is occupied by an elastic 
medium with elastic constants (μ2, ν2). There is a rectangular crack terminating at the bimaterial 
interface as shown in Fig.1. The parametersθ , 1θ , 0ξ , r and p are the local polar coordinates at the 

general crack surface, the local polar coordinates at the bimaterial crack surface, source point, distance 
between the source point and field point and field point, respectively. The crack is assumed to be in a 
plane normal to the x3 axis, and subjected to mixed mode loads. Using the Somigliana formula and the 
body force method (Lee and Keer,1986), the displacements in the right material can be expressed as  
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( ( , ) ( ) ( )i ij ju T u ds= ∫S
x) x %ξ ξ ξ      i ,j=1,2,3               (1) 

Where , , and ξ x i i iu u u+ −= −% denote the source point, field point and the ith displacement 

discontinuity of the crack surface, respectively. The basic solution of stress, , is shown in 

Appendix. The corresponding stress field is given as follow 
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Let the point x in equation (2) tends to the crack surface, using the traction boundary condition of the 

crack surface, the hypersingular integral equation for unknown function  can be obtained  iu%

∫ −=+
−

+
−

+ S
pdsuKrr

rr
)()()(~)],(

4
)3(3

2
1[

)1( ,1,13
1

1
3

1

1

1

1

xx αβαββααβ
κδκ

κπ
μ

ξξξ

    α,β=1, 2    (3) S∈x
1

0 3 33
1 1

1[ ( , ) ] ( ) ( )
( 1) S K u d s p

r
( )μ

π κ
+

+ ∫ x x%ξ ξ ξ=

=

= −               (4) 

Where is the symbol of the finite-part integral, and ∫=
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In which  denotes the ith direction force at source point x,)(xip 1,1 )( rxr ααα ξ−= , 1,1 )( rxr βββ ξ−= , 
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112 )x()x(r ξ++ξ−= . Notice that equations (3, 4) are 

hypersingular integral equations, and can be numerically solved.  
 
3 Singular indexes near the crack front meeting the interface and intensity factors 
According to the theory of the hypersingular integral equation (Cook and Erdogan, 1972; Qin and 

Noda, 2002), the displacement discontinuities of the crack surface near a point ξ0 at the interface can 

be assumed as  
1

1 1( ) ( )u D 2
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           (11) 

where  are non-zero constants related to point ξ0, λ and λ1 are the 

stress singular indexes near the crack front meeting the interface, which can be determined by the 
following equations (Qin and Noda, 2003). 
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The stress intensity factors along the crack front meeting the interface are defined as 
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Based on the analytical solutions of the singular stress field around the crack front terminating at the 

interface (Qin and Noda, 2003), for a point p near the crack front point ξ0 in the right material, the 

stress intensity factors along the crack front meeting the interface can be rewritten as follow 
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Here [2 2 ( )]A B A Bω λ= − − − − . 
 
4 Numerical procedures 
The numerical procedure for equations (4) has been given by Qin and Noda (2003). Here the 
numerical method for equation (3) will be given as follows. Using the behavior near the crack front, 
the displacement discontinuities of a rectangular crack can be written as 
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Where  are unknown constants. Substituting (20~ 21) into (3), a set of algebraic linear equations 
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The integrals (29~30) are general ones, and can be numerically calculated. The integral (25~28) are 
hypersingulars, and must be treated before being numerically evaluated. Using the Taylor’s expansion 

and the polar coordinates 1111 cos θ=−ξ rx , 1122 sin θ=−ξ rx as shown in Figure2, following 

relations can be obtained 
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Fig.2 Integral parameters 
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Using relations (31~32), the kernels of integral (25~28) can be written as follow 
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Where  and  (i=0, 1, 2) are known functions, and can be obtained by Taylor’s 

expansion. Using the finite-part integral method and relations (36~37), the hypersingular integrals 
(25~28) can be reduced as 
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Now the integrals in (38~41) are generals, and can be calculated numerically. From (15~16) and 

(18~22), the stress intensity factors at the crack front point x0 on the interface can be evaluated as 

follow 
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5 Numerical results 
Consider a rectangular crack meeting the interface in three-dimensional infinite dissimilar material 

body under a uniform shear load 31σ ∞  or 32σ ∞  at infinity. In demonstrating the numerical results, the 

following dimensionless stress intensity factors of the interface crack front and inner crack front will 
be used  

1
1 1

1
3, , 31IIIF K b λ

λ λ σ −∞=     1
2, , 31IIF K b λ

λ λ σ ∞ −=                          (44) 

2 3II 1F K bσ ∞=      3 3III 1F K σ ∞= b                               (45) 

If the load is 32σ ∞ , the load 31σ ∞  in (44~45) should be replaced by 32σ ∞ . 

5.1 Compliance of boundary condition and convergence of numerical solutions 
In solving the algebraic equations (23), the least square method is applied to minimize the residual 

stress at the collocation points. When the solid is subjected to a uniform shear load 31σ ∞  at infinity, 

Figure 3 and Figure 4 show the compliance of the boundary conditions along the crack surface for 
a/b=1, , 2/ 12 =μμ 3.021 =ν=ν , where the collocation point number is 400 (20 × 20). For this 

case, the singular indexes are 0 566.λ = and 1 0.608λ = . It is shown that the remaining stresses 

( 31

31

1σ
σ ∞ + ) and 32

31

σ
σ ∞  on the crack surface are less than 0.006 when M=N=7, less than 44.0 10 −×  

when M=N=9, less than  when M=N=11, and less than 56.0 10 −× 51.6 10 −×  when M=N=13. 
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In the case of homogeneous materials, the numerical results of dimensionless stress intensity factors 
with increasing the polynomial exponents are given in Table1 and Table2, and compared with those 
given by Noda and Kihara (2002) and Chen (2004). Due to the symmetry, only the numerical results 

for 2 1≥x / b are given. It is shown that the results are convergent, and the collocation point number 

20 × 20 and the polynomial exponents M=N=9  are enough for satisfied result precision in this case. 

Since the polynomial exponents are larger than that used by Chen (2004), the present results are more 
reliable. In general, too large polynomial exponents can’t give reliable results. The polynomial 
exponents M, N depend on the collocation point number. For the polynomial exponents M=N=15, the 
results of the collocation point number 20 × 20 are not good, but the ones of the collocation point 
number 30 × 30 are satisfied.  
 
Table 1 Convergence of dimensionless stress intensity factor 2F  along 1x a= ±  with increasing the 

polynomial exponents M=N ( a/b=1, 1/ 12 =μμ , 3.021 =ν=ν , Collocation points 20 × 20 )   

 2x / b  

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

M=5 0.8450 0.8424 0.8332 0.8190 0.8004 0.7779 0.7502 0.7122 0.6502 0.5243

M=7 0.8398 0.8382 0.8328 0.8224 0.8049 0.7810 0.7506 0.7058 0.6536 0.5201

M=9 0.8412 0.8391 0.8321 0.8208 0.8042 0.7820 0.7526 0.7051 0.6499 0.5238

M=11 0.8411 0.8390 0.8325 0.8212 0.8041 0.7817 0.7525 0.7054 0.6484 0.5226

M=13 0.8412 0.8391 0.8325 0.8212 0.8041 0.7817 0.7526 0.7058 0.6472 0.5228

Noda 0.8412 0.8391 — 0.8216 — 0.7819 — 0.7062 — 0.5381

Chen 0.8388 0.8375 0.8333 0.8225 0.8122 0.7911 0.7579 0.7056 0.6217 0.4760

      
Table 2 Convergence of dimensionless stress intensity factor 

13,F λ along 0x 2 =  with increasing the 

polynomial exponents M=N ( a/b=1, 1/ 12 =μμ , 3.021 ==νν , Collocation points 20 × 20 )   

 



 1x / a  

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

M=5 0.6563 0.6542 0.6477 0.6372 0.6224 0.6028 0.5769 0.5402 0.4831 0.3794 

M=7 0.6540 0.6523 0.6466 0.6368 0.6219 0.6026 0.5787 0.5402 0.5016 0.4010

M=9 0.6544 0.6524 0.6466 0.6365 0.6216 0.6018 0.5787 0.5362 0.5023 0.4024

M=11 0.6544 0.6524 0.6466 0.6365 0.6217 0.6020 0.5781 0.5370 0.4951 0.4021

M=13 0.6544 0.6525 0.6467 0.6366 0.6217 0.6023 0.5779 0.5372 0.4906 0.4020

Noda 0.6544 0.6525 — 0.6369 — 0.6025 — 0.5389 — 0.4080

Chen 0.6638 0.6619 0.6561 0.6457 0.6296 0.6063 0.5728 0.5248 0.4540 0.3406

 

5.2 A rectangular surface crack in a half space 
If 012 →μμ , it is the case of a surface crack in a half space. Now the polynomial exponents are 

taken as M=N=9, and the collocation point number is 20 × 20. For a rectangular surface crack in a 
homogeneous material, Table 3 gives the maximum stress intensity factor  under a uniform shear 

load 
3F

31σ ∞  for different ratios of a/b. It is shown that, for the case of anti-plane problem, present 
results are close to those given by Westergaard (1939) and Tada (1972). Table 4 gives the maximum 

stress intensity factor  under a uniform shear load2F 32σ ∞ . It is shown that, for the case of plane 

problem, present results are close to those given by Tracey and Cook (1977) and Xiao and Karihaloo 
(2002).  

Table 3 Dimensionless stress intensity factor  for3F 2 1/ 0μ μ = , at ,1 0.3ν = 0x1 = 2 2x b=  

a/b 
 

1 2 5 8 10 12 ∞  

Present 0.6615 0.8645 1.147 1.285 1.385 1.410 ⎯ 

Westergaard ⎯ ⎯ ⎯ ⎯   1.414 

Tada ⎯ ⎯ ⎯ ⎯   1.414 

Table 4 Dimensionless stress intensity factor  for2F 012 =μμ , 3.01 =ν  at ,  0x1 = b2x 2 =

a/b 
 

1 2 5 8 ∞ 

Present 0.9703 1.255 1.480 1.542 ⎯ 

Tracey ⎯ ⎯ ⎯ ⎯ 1.542 

Xiao ⎯ ⎯ ⎯ ⎯ 1.539 

 

5.3 Solutions for general cases 
For general cases, the polynomial exponents are taken as M=N=9, and the collocation point number is 

20 × 20 for the following results. When the solid is subjected to a uniform shear load 31σ ∞  at 
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infinity, the stress intensity factor along the crack front meeting at the interface is of mode III. Table5 
gives the maximum stress intensity factor 

13,F λ  for different ratios of a/b and 12 μμ . The 

dimensionless stress intensity factors 2F  at crack front point (a, b) and  at crack front point (0, 
2b) are shown in Figure5 and Figure6 for different ratio of

3F

12 μμ , respectively. It can be shown that 
the stress intensity factors vary more gently when 1012 ≥μμ . In case of 212 =μμ , Figure7 gives 
the dimensionless stress intensity factor 

13,F λ  along the crack front meeting at the interface for 

different ratios of a/b. Figure 8 gives the dimensionless stress intensity factor  along the interface 
crack front ( ) for  and 

2F
a1 ±=x 3.021 =ν=ν 1012 =μμ . When the solid is subjected to a uniform 

shear load 32σ ∞  at infinity, the stress intensity factor along the crack front meeting at the interface is 
of mode II. The dimensionless stress intensity factor 2,F λ  along the crack front meeting at the 

interface is given graphically in Figure9 for 212 =μμ  and different ratios of a/b. Figure10 gives the 
dimensionless stress intensity factor  along the interface crack front (3F a±1 =x ) for 3.021 =ν=ν  
and 2=1μ2μ .  

 for 1 2 0.v v 3= = , at ,  0Table 5 Dimensionless stress intensity factor 1 =x 2 0=
13,F λ x

12 μμ  

0.1 0.5 1.0 2.0 5.0 10 20  50  

(λ1=0.195) (λ1=0.392) (λ1=0.5) (λ1=0.608) (λ1=0.732) (λ1=0.805) (λ1=0.860) (λ1=0.911)

a/b=1 0.1098 0.3534 0.6544 1.189 2.808 4.652 5.160 5.165 

a/b=2 0.1616 0.4452 0.8099 1.479 3.355 5.419 5.928 5.932 

a/b=3 0.2276 0.5411 0.9715 1.835 3.803 5.847 6.355 6.359 
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Fig.5 Dimensionless stress intensity factors  at points (2F bxa,x =±= 21 ), 
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     Fig.6 Dimensionless stress intensity factors  at point (3F bx,x 20 21 == ) 
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   Fig. 7 Dimensionless stress intensity factor  along the interface crack front (

1,3 λF 02 =x ) 

for 3.021 =ν=ν , 212 =μμ ，λ1=0.608 
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Fig.8 Dimensionless stress intensity factor  along the interface crack front (2F a1 ±=x ) 
for , 3.021 =ν=ν 1012 =μμ  
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   Fig. 9 Dimensionless stress intensity factor  along the interface crack front (λ2,F 02 =x ) 

for 3.021 =ν=ν , 212 =μμ ，λ=0.566 
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Fig.10 Dimensionless stress intensity factor  along the interface crack front ( ) 
for

3F

2

a1 ±=x
3.01 =ν=ν , 212 =μμ  

 

6 Conclusions 

A mixed-mode rectangular crack meeting the interface in a three-dimensional dissimilar materials 
subjected to shear loads is studied by a hypersingular integral equation based on the body force 
method.  
1) The stress singularity and singular stress field around the crack front terminating at the interface are 
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obtained by the main-part analytical method. Although expressions of the displacements and stresses 
in the materials are complex in modality, the solutions of singular stresses around the crack front are 
briefly discussed.  
2) The unknown function of the hypersingular integral equation is approximated by a product of a 
series of power polynomials and a fundamental solution, which exactly expresses the singularities of 
stresses near the crack front. The numerical results show that this numerical technique is successful, 
and the solution precision is satisfied.  
3) From the numerical solutions, it is shown that the stress intensity factors vary more gently 
when 1012 ≥μμ , and the stress intensity factor at the center of the crack front for the case of 8ba ≥  

is close to that of two-dimensional case. 
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